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1 Notation

Recall that Prøst-n is a permutation on 2n bits. In the following, we let τ denote the size of the tag.
Furthermore, in the context of Prøst-APE, c denotes the capacity and r denotes the rate.

Let Perm(2n) be the set of all permutations on 2n bits. We write x
$←− X to denote that x is sampled

uniformly at random from X. Let P̃K denote the single-key Even-Mansour construction (SEM) using
permutation P with key K.
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3 Security Proofs

For all our security proofs, we assume Prøst to be an ideal permutation. Two of the suggested modes
of operation for Prøst are block cipher-based (COPA and OTR), while the last (APE) is permutation-
based. As such, the security proof for Prøst-APE is obtained via the security proof for the APE mode
of operation, as this proof assumes any ideal permutation. For the block cipher-based modes, we remark
that both the security proofs for the COPA and OTR modes of operation apply to any block cipher
E, and indeed one needs only use the appropriate AdvsprpE for the particular choice of E.

3.1 Security Definitions

In the following, we give the canonical definitions of security that allow us in Sections 3.3 through 3.5
to show the security of our proposals with respect to privacy and authenticity.

Definition 1 (Distinguisher). We define a distinguisher D to be an algorithm which is given access
to a list of oracles O1, . . . ,Ok, denoted DO1,...,Ok . The oracles represent on one hand either the behavior
of an instantiation of a concrete cryptographic primitive or an idealized versions of the primitive on
the other hand. The goal of the distinguisher is to guess which is the case. We say (without loss of
generality) that DO1,...,Ok = 1 if the distinguisher guesses that the oracles represent the former, and
DO1,...,Ok = 0 otherwise.

For the security of Prøst-COPA, we will need the notion of an online cipher. The notation is
re-used from the security proof of COPA [ABL+13].



Definition 2 (Online cipher). A cipher E : K × (F2n
2 )+ → (F2n

2 )+ is said to be online if it has the
property that

1. It is a permutation on every block of 2n bits and
2. The output blocks are identical for two different inputs with a common prefix, i.e. EK(X‖Y ) and
EK(X‖Y ′) are identical on the first |X| bits for any X,Y, Y ′ ∈ (F2n

2 )+.

As such, an online cipher EK is a permutation on the blocks starting from block i and onwards, and
is determined by the first i − 1 blocks. We let OPerm(2n) denote the set of all such permutations
π : (F2n

2 )+ → (F2n
2 )+. For APE, we use a slightly different online permutation, see [ABB+14].

Definition 3. Let E be a block cipher. The sprp advantage of a distinguisher D is defined as

AdvsprpE (D) =
∣∣∣Pr
K

[
DEK ,E

−1
K = 1

]
− Pr

π

[
Dπ,π

−1

= 1
]∣∣∣ .

The probabilities are taken over K
$←− K, π

$←− Perm(2n) and any random choices made by D. We
denote by AdvsprpE (t, q) the maximum advantage taken over all distinguishers D that run in time t and
make q queries. Note: In the case where E is the Single-Key Even-Mansour construction using an ideal
permutation P , the distinguisher has also access to the underlying permutation (in both directions) in
both worlds (and thus access to four oracles). In the ideal world, P and π are independent.

With respect to privacy, the attack model considered is chosen-plaintext attacks (IND-CPA).

Definition 4. Let E be a block cipher-based AE scheme. The IND-CPA advantage of a distinguisher
D is defined as

AdvprivE (D) =

∣∣∣∣Pr
K

[
DEK = 1

]
− Pr

$

[
D$ = 1

]∣∣∣∣ .
The probabilities are taken over K

$←− K, $
$←− OPerm(2n) and any random choices made by D. By

AdvprivE (t, q, σ, `) we denote the maximum advantage taken over all distinguishers D that run in time t
and make q queries, of length at most ` blocks, and of total length at most σ blocks.

Definition 5. Let E be a block cipher-based AE scheme. The authenticity advantage of a distinguisher
D is defined as

AdvauthE (D) =
∣∣∣Pr
K

[
DEK ,E

−1
K = 1

]
− Pr

K

[
DEK ,⊥ = 1

]∣∣∣ ,
where ⊥ in this context denotes a function that returns ⊥ on every input. The probabilities are taken

over K
$←− K and any random choices made by D. By AdvauthE (t, q, σ, `) we denote the maximum

advantage taken over all distinguishers D that run in time t and make q queries, of length at most
` blocks, and of total length at most σ blocks. We assume that D does not make a decryption query
(A,C, T ) if it has already seen (C, T ) = EK(A,M) for some M .

Definition 6. Let E be a permutation-based AE scheme. The IND-CPA advantage of a distinguisher
D is defined as

Advperm-priv
E (D) =

∣∣∣∣Pr
K,π

[
DEK ,π,π

−1

= 1
]
− Pr

π

[
D$,π,π−1

= 1
]∣∣∣∣ .



The probabilities are taken over K
$←− K, π

$←− Perm(2n), $
$←− OPerm(r), and any random choices

made by D. By Advperm-priv
E (q,m) we denote the maximum advantage taken over all distinguishers D

making q queries totaling m blocks.

Definition 7. Let E be a permutation-based AE scheme. The authenticity advantage of a distinguisher
D is defined as

Advperm-auth
E (D) =

∣∣∣∣Pr
K,π

[
DEK ,E

−1
K ,π,π−1

= 1
]
− Pr

π

[
DEK ,⊥,π,π

−1

= 1
]∣∣∣∣ .

The probabilities are taken over K
$←− K, π

$←− Perm(2n), and any random choices made by D. By

Advperm-auth
E (q,m) we denote the maximum advantage taken over all distinguishers D making q queries

totaling m blocks. We assume that D does not make a decryption query (A,C, T ) if it has already seen
(C, T ) = EK(A,M) for some M .

3.2 Patarin’s H-coefficient Technique

For our proof of Lemma 1, we will rely on a proof technique due to Patarin [Pat08]. We state here the
result as we need it and refer to [CS14] for further details on the technique.

Let D be a distinguisher trying to distinguish between two systems X and Y . The interaction of
D is captured by a transcript which is denoted τ . For Z ∈ {X,Y }, we let DZ denote the probability
distribution over transcripts when interacting with system Z. Let T be the set of all feasible transcripts
which is partitioned into a set of good and bad transcripts s.t. T = Tgood ∪Tbad. Now, consider a fixed
distinguisher D and let ε be s.t. for all τ ∈ Tgood it holds that

Pr [DX = τ ]

Pr [DY = τ ]
≥ 1− ε,

then the H-coefficient technique says that Adv(D) ≤ ε+ Pr [DY ∈ Tbad].

Lemma 1 (Security bound on SEM). Let P be an ideal permutation s.t. an adversary can make
at most ρ evaluations of P in time t. Then

Advsprp
P̃K

(t, q) ≤ 2ρq

22n
.

Proof. Let D be any distinguisher which can evaluate P at most ρ times in time t. For the proof
we use Patarin’s H-coefficient technique. Let X denote the real world in which D interacts with the
oracles O1,O2,O3,O4 = P̃K , P̃

−1
K , P, P−1 and let Y denote the ideal world where D interacts with

O1,O2,O3,O4 = π, π−1, P, P−1 for K
$←− K and π

$←− Perm(2n).
The result of the interaction by D using q construction queries we denote τE = {(si, tt)}qi=1.

Similarly, the result of the interaction using ρ queries to P we denote τP = {(xi, yi)}ρi=1. To ease the
analysis, the key K is disclosed at the end of the experiment (in the ideal world, a dummy key K is
disclosed). We define a transcript as a tuple (τE , τP ,K) and a bad transcript is such a tuple where it
holds that

K ∈ {s⊕ x, y ⊕ t | (s, t) ∈ τE ∧ (x, y) ∈ τP }.



Bounding Pr [DY ∈ Tbad]. There are ρ pairs (x, y) ∈ τP and for each of them we consider each pair
(s, t) ∈ τE . This means there are at most q · ρ values for s⊕ x, any of which equals K with probability
2−2n. A similar argument applies to the probability of there being a pair (x, y) and (s, t) s.t. t⊕y = K.
As such, we find Pr [DY ∈ Tbad] ≤ 2qρ

22n .

Bounding Pr [DX = τ ] /Pr [DY = τ ] for τ ∈ Tgood. Consider some τ ∈ Tgood. Let ΩX and Ωy denote
all possible oracles in the real world and ideal world, respectively. Correspondingly, let compX(τ)
(respectively compY (τ)) denote transcripts in ΩX (respectively ΩY ) which are compatible with τ .

Since the key space has size 22n, and there are 22n! permutations on 2n bits, we have that
|ΩX | = 22n · 22n! and |ΩY | = 22n · (22n!)2. Now, τ ∈ Tgood implies that any tuple in τ defines a
unique input/output pair to P . As τE ∪ τP consists of q + ρ tuples, the number of compatible 2n-bit
permutations in the real world is |compX | = (22n − q − ρ)!. Correspondingly, in the ideal world, the
number of permutations compliant with P is (22n − ρ)! while the number of permutations compliant
with the construction queries is (22n− q)!. As such, |compY | = (22n− q)!(22n−ρ)! ≤ (22n− q−ρ)!22n!.

By definition, we find that

Pr [DX = τ ] =
(22n − q − ρ)!

22n · 22n!

=
(22n − q − ρ)!22n!

22n · (22n!)2

≥ |compY |
|ΩY |

= Pr [DY = τ ] .

As such, we see Pr [DX = τ ] ≥ Pr [DY = τ ], so ε ≤ 0 and we have Advsprp
P̃K

(t, q) ≤ 2qρ
22n . ut

3.3 Prøst-COPA

Theorem 1 (Privacy for Prøst-COPA). Assume that Prøst is an ideal permutation and that an
adversary can make at most ρ evaluations of the Prøst permutation in time t′, where t′ ≈ t. Then

AdvprivPrøst-COPA(t, q, σ, `) ≤ 39(σ + q)2

22n
+

8ρ(σ + q)

22n
+

(`+ 2)(q − 1)2

22n
.

Proof. The proof follows from combining the proof for privacy of COPA [ABL+13, Theorem 2] with
Lemma 1. ut

Theorem 2 (Authenticity for Prøst-COPA). Assume that Prøst is an ideal permutation and
that an adversary can make at most ρ evaluations of the Prøst permutation in time t′, where t′ ≈ t.
Then

AdvauthPrøst-COPA(t, q, σ, `) ≤ 39(σ + q)2

22n
+

8ρ(σ + q)

22n
+

(`+ 2)(q − 1)2

22n
+

2q

2τ
.

Proof. The proof follows from combining the proof for authenticity of COPA [ABL+13, Theorem 3]
with Lemma 1. ut



3.4 Prøst-OTR

The security proof for OTR by Minematsu [Min14] is in the ideal model, i.e. it assumes the underlying
block cipher to be an ideal primitive. In this section, we give a proof in the standard model. In
particular, we model the encrypting of a block in OTR, with its masking, as an XE construction
(see [Rog04]).

Theorem 3 (Privacy for Prøst-OTR). Assume that Prøst is an ideal permutation and that an
adversary can make at most ρ evaluations of the Prøst permutation in time t′, where t′ ≈ t. Then

AdvprivPrøst-OTR(t, q, σ, `) ≤ 6(σ + q)2

22n
+

4ρ(σ + q)

22n
.

Proof. The proof follows from combining three parts: The proof for privacy of OTR [Min14, Theorem 1]
in the ideal model; the fact that the modeling of OTR using XE-blocks admits the term AdvsprpE (t′, 2σ)
in the standard model (where t′ ≈ t); Lemma 1 which gives the term AdvsprpE (t′, 2σ). ut

Theorem 4 (Authenticity for Prøst-OTR). Assume that Prøst is an ideal permutation and
that an adversary can make at most ρ evaluations of the Prøst permutation in time t′, where t′ ≈ t.
Then

AdvauthPrøst-OTR(t, q, σ, `) ≤ 6(σ + q)2

22n
+

4ρ(σ + q)

22n
+

q

2τ
.

Proof. The proof follows from combining the proof for authenticity of OTR [Min14, Theorem 2] in the
ideal model; the fact that the modeling of OTR using XE-blocks admits the term AdvsprpE (t′, 2σ) in
the standard model (where t′ ≈ t); Lemma 1 which gives the term AdvsprpE (t′, 2σ). ut

3.5 Prøst-APE

In this section we present security bounds for Prøst-APE. The proofs of security for the APE mode
of operation assume an ideal permutation, thus under this assumption, the security bounds for the
APE construction carry directly over to Prøst-APE. Note that the security bounds do not depend on
the time t used by the distinguisher. Indeed, the bound holds for the strongest type of distinguishers,
whose time complexity is unbounded; only the number of queries q and their total length m, made by
the distinguisher matters.

Theorem 5 (Privacy for Prøst-APE). Assume that Prøst is an ideal permutation. Then

Advperm-priv
Prøst-APE(q,m) ≤ m2

22n
+
m(m+ 1)

2c
.

Proof. The proof is given in [ABB+14, Theorem 1].

Theorem 6 (Authenticity for Prøst-APE). Assume that Prøst is an ideal permutation. Then

Advperm-auth
Prøst-APE(q,m) ≤ m2

22n
+

2m(m+ 1)

2c
.

Proof. The proof is given in [ABB+14, Theorem 2].
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